Neural networks in satellite rainfall estimation
نویسندگان
چکیده
Neural networks (NNs) have been successfully used in the environmental sciences over the last two decades. However, only a few review papers have been published, most of which cover image processing, classification, prediction and geophysical retrieval in general, while neglecting rainfall estimation issues. This paper reviews, without aiming to be exhaustive, NN approaches to satellite rainfall estimation (SRE) by providing an overview of some of the methodologies proposed. A basic introduction to NNs is provided and the advantages of using NNs in SRE are explained, illustrating how NNs can be used to complement more computational-expensive methods to generate quick and accurate results in near real time. The role of the NNs in statistical-empirical algorithms is also reviewed. The last section aims to generate some discussion through comparing the empirical and deterministic algorithmic approaches and contrasting some of the apparent drawbacks of using NNs with a statistically based view of the satellite geophysical parameter estimation.
منابع مشابه
Utilizing satellite images and artificial neural networks in estimation of vegetation fraction in arid regions
متن کامل
Performance of High Resolution Satellite Rainfall Products over Data Scarce Parts of Eastern Ethiopia
Accurate estimation of rainfall in mountainous areas is necessary for various water resource-related applications. Though rain gauges accurately measure rainfall, they are rarely found in mountainous regions and satellite rainfall data can be used as an alternative source over these regions. This study evaluated the performance of three high-resolution satellite rainfall products, the Tropical ...
متن کاملMultiple data fusion for rainfall estimation using a NARX-based recurrent neural network – the development of the REIINN model
Rainfall, one of the important elements of the hydrologic cycle, is also the most difficult to model. Thus, accurate rainfall estimation is necessary especially in localized catchment areas where variability of rainfall is extremely high. Moreover, early warning of severe rainfall through timely and accurate estimation and forecasting could help prevent disasters from flooding. This paper prese...
متن کاملSelf-organizing nonlinear output (SONO): A neural network suitable for cloud patch–based rainfall estimation at small scales
[1] Accurate measurement of rainfall distribution at various spatial and temporal scales is crucial for hydrological modeling and water resources management. In the literature of satellite rainfall estimation, many efforts have been made to calibrate a statistical relationship (including threshold, linear, or nonlinear) between cloud infrared (IR) brightness temperatures and surface rain rates ...
متن کاملInvestigating Error Metrics for Satellite Rainfall Data at Hydrologically Relevant Scales
This paper addresses the following open question: What set of error metrics for satellite rainfall data can advance the hydrologic application of new-generation, high-resolution rainfall products over land? The authors’ primary aim is to initiate a framework for building metrics that are mutually interpretable by hydrologists (users) and algorithm developers (data producers) and to provide more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004